翻訳と辞書
Words near each other
・ Cohocton (village), New York
・ Cohocton River
・ Cohocton, New York
・ Cohocton, New York (disambiguation)
・ Cohoe, Alaska
・ Cohoes
・ Cohoes City Hall
・ Cohoes Commons
・ Cohoes Falls
・ Cohoes High School
・ Cohoes Music Hall
・ Cohoes, New York
・ Cohoke, Virginia
・ Cohomological descent
・ Cohomological dimension
Cohomological invariant
・ Cohomology
・ Cohomology of algebras
・ Cohomology operation
・ Cohomology ring
・ Cohomology with compact support
・ Cohomotopy group
・ Cohong
・ Cohoni
・ Cohonina
・ Cohons
・ Cohoquinoque Creek
・ Cohors amicorum
・ Cohors I Aelia Dacorum
・ Cohors I Aelia Gaesatorum milliaria sagitt


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cohomological invariant : ウィキペディア英語版
Cohomological invariant
In mathematics, a cohomological invariant of an algebraic group ''G'' over a field is an invariant of forms of ''G'' taking values in a Galois cohomology group.
==Definition==
Suppose that ''G'' is an algebraic group defined over a field ''K'', and choose a separably closed field containing ''K''. For a finite extension ''L'' of ''K'' in let Γ''L'' be the absolute Galois group of ''L''. The first cohomology H1(''L'', ''G'') = H1''L'', ''G'') is a set classifying the forms of ''G'' over ''L'', and is a functor of ''L''.
A cohomological invariant of ''G'' of dimension ''d'' taking values in a Γ''K''-module ''M'' is a natural transformation of functors (of ''L'') from H1(L, ''G'') to H''d''(L, ''M'').
In other words a cohomological invariant associates an element of an abelian cohomology group to elements of a non-abelian cohomology set.
More generally, if ''A'' is any functor from finitely generated extensions of a field to sets, then a cohomological invariant of ''A'' of dimension ''d'' taking values in a Γ-module ''M'' is a natural transformation of functors (of ''L'') from ''A'' to H''d''(L, ''M'').
The cohomological invariants of a fixed group ''G'' or functor ''A'', dimension ''d'' and Galois module ''M'' form an abelian group denoted by Inv''d''(''G'',''M'') or Inv''d''(''A'',''M'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cohomological invariant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.